Experimental apparatus for Experimental Studies of Natural and Mixed Convection Along Vertical Thermo Active Room Surface

Instalacija za Eksperimentalna Istraživanja Prirodne i Prirodno-Prinudne (Mešovite) Konvekcije duž Vertikalne Termo-Aktivne Sobne Površine

dr. Samo Venko
Belgrade, Serbia, 2.12.2016
Natural and mixed convection on room surfaces:
Literature review

- High efficient heating and cooling by TABS
- Empirical models for CHTC:
 - **Natural convection:**
 - Studies in opened rooms
 - Heated surfaces
 - Horizontal surfaces (floor, ceiling)
 - Average room air temperature as a reference air temperature
 - Average CHTC
 - **Mixed convection:**
 - Mechanically or hybrid ventilated rooms
 - Lack of studies under different boundary conditions
- Cooled and heated vertical thermo active room surface

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Experimental Apparatus

Lindab‘s R&D Centre in Godovič, Slovenia

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Experimental Apparatus

- Thermostatic chamber
- Vertical Thermo Active Room Surface (TARS)
- Setup for Measurements of Velocities and Temperatures of Room Air
- Setup for Measurements of Temperatures and Heat Fluxes on Vertical TARS
- Supply Air Diffusor and Ventilation System
- Setup for Temperature and Flow Rate Control of the Supply Air
- Data Acquisition and Control System

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Thermostatic chamber (TC)

TC outside

TC inside

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Vertical Thermo Active Room Surface (TARS)

Dirichlet boundary condition

\[
\frac{\partial \theta_{TARS}}{\partial x} = \frac{\partial \theta_{TARS}}{\partial y} = 0
\]

Heat flux sensors over TARS

TARS coated with low-\(\varepsilon\) coating

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Measurements of Velocities and Temperatures of Room Air

Heat flux sensors over vertical TARS

Heat flux sensors with dimensions 120 mm × 30 mm
Heat flux sensors with dimensions 120 mm × 120 mm

Used heat flux sensors

Schematic cross-section of heat flux sensor
ref: http://www.phymeas.de/

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Supply Air Diffusor and Ventilation System

1 – supply air diffusor

2, 3 – exhaust air diffusors

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Supply Air Diffusor and Ventilation System

Velocity vectors inside diffusor’s chamber and at slot

Smoke test before installation

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Measurements of Velocities and Temperatures of Room Air

- Zone at the vertical TARS where temperature and velocity fields are measured with moving sensors
- Combined sensors for temperature and velocity
- Temperature sensors Pt-100 Class A installed into the radiant shield

Distances from Vertical TARS for Temperature Measurements

<table>
<thead>
<tr>
<th>y (mm)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>65</th>
<th>75</th>
<th>90</th>
<th>105</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>175</td>
<td>210</td>
<td>245</td>
<td>285</td>
<td>325</td>
<td>415</td>
<td>515</td>
<td>615</td>
<td>715</td>
<td></td>
</tr>
</tbody>
</table>

Distances from Vertical TARS for Velocity Measurements

<table>
<thead>
<tr>
<th>y (mm)</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>50</th>
<th>60</th>
<th>75</th>
<th>90</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>160</td>
<td>195</td>
<td>230</td>
<td>270</td>
<td>310</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td></td>
</tr>
</tbody>
</table>

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Temperature and Flow Rate Control of the Supply Air

1 – mass flow rate measuring
2 – supply air duct
3 – exhaust air duct

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Data Acquisition and Control System

- Desktop computer
- Siemens Simatic S7-300
- Siemens A/D, D/A modules

- Data Acquisition:
 - A/D conversion 40 … 400 Hz
 - data storage 2 Hz

- Control System:
 - maintaining steady state boundary conditions
 - due point control

dr. Samo Venko (samo.venko@lindab.com); Belgrade, Serbia 2.12.2015
Conclusions

- Experimental apparatus was designed based on our own theoretical and practical knowledge
- Extensive usage of CFD during designing phase
- Design allows studies of natural and mixed convection under variety of boundary conditions
- We hope that this paper will be useful also for other researchers
Thank you for your attention