DYNAMIC HEAT TRANSFER IN WALLS: HEAT FLUX METERS LIMITATION

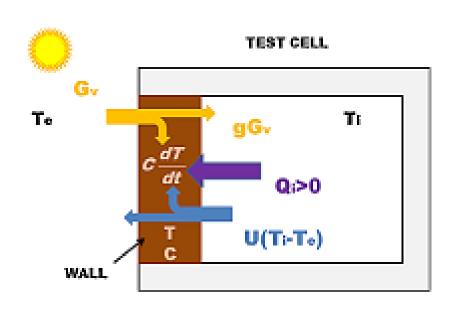
Ibán NAVEROS Christian GHIAUS

CONTENTS

Introduction

Methodology

Heat flux through walls


Conclusions

INTRODUCTION

Heat transfer through **walls** needs to be **characterized**. **Test cells** are usually **used** for this purpose.

INTRODUCTION

Inputs and **outputs** are **measured** for the thermal characterization of the wall

Outdoor temperature

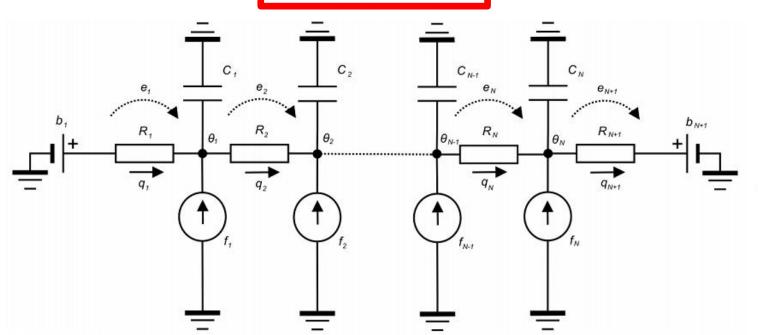
Indoor temperature

Heat flux density

Solar irradiance

Naveros et al. 2013 [9]

METHODOLOGY


Thermal models for the study of heat transfer in walls

From heat equation to transfer function matrix

 Each transfer function is given by the system characteristics for a particular output regarding to each particular input

THERMAL NETWORK

LEGEND

- C_l thermal capacity in node l, IK^{-1}
- e_k temperature difference over the thermal resistance on branch k, K
- b_k temperature source on branch k, K
- R_k thermal resistance on branch k, KW⁻¹
- θ_l temperature of node l, K
- q_k heat transfer rate on branch k, W
- f_l heat rate source in node l, W

HEAT EQUATION

$$\rho c \frac{\partial \theta}{\partial t} = -\nabla \cdot (-\kappa \, \nabla \theta) + p$$

DIFFERENTIAL AND ALGEBRAIC EQUATIONS

$$C\dot{\theta} = -A^TGA\theta + A^TGb + f$$

NOMENCLATURE

 \mathbf{A}^T

G

f

θ	is the function of temperature distribution in the medium, K,
ρ	- the medium density, kg m ⁻³ ,
C	- the medium heat capacity, J kg ⁻¹ K ⁻¹ ,
∇	- the gradient operator, m ⁻¹ ,
∇ ·	- the divergence operator, m ⁻¹ ,
κ	- the medium thermal conductivity, W m ⁻¹ K ⁻¹ , and
p	 the function of heat rate sources supplied to the solid, W m⁻³.

θ	is the vector	of temperatures	in	the	nodes,	K

- the diagonal matrix of thermal capacities, JK⁻¹,
- the incidence matrix of the thermal network,
- the transpose of the incidence matrix,
- the diagonal matrix of thermal conductivities, WK⁻¹,
- the vector of temperatures sources on the branches, K, and
- the vector of heat rate sources, W.

Transfer Matrix

State-state: Inputs(**u**)/State variables(**x**)/Outputs(**y**) relation

$$\dot{\mathbf{x}} = \mathbf{A}_S \mathbf{x} + \mathbf{B}_S \mathbf{u}$$
$$\mathbf{y} = \mathbf{C}_S \mathbf{x} + \mathbf{D}_S \mathbf{u}$$

Transfer function **matrix**:

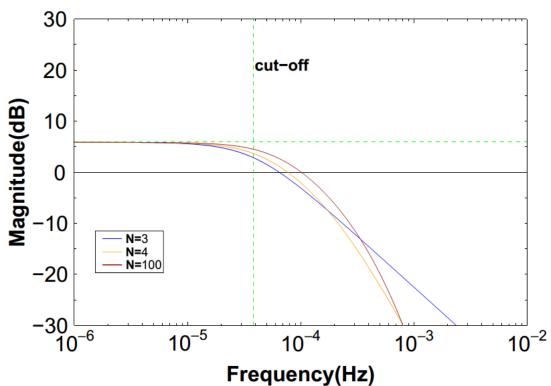
$$\mathbf{H}_S = \mathbf{C}_S (s\mathbf{I} - \mathbf{A}_S)^{-1} \mathbf{B}_S + \mathbf{D}_S$$

$$\mathbf{H}_{S} = \begin{bmatrix} \mathbf{H}_{1} & \mathbf{H}_{2} \end{bmatrix}^{T} = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \end{bmatrix}$$

HEAT FLUX AS OUTPUT

If the **heat flux** density is chosen as **output**, the observation equation is:

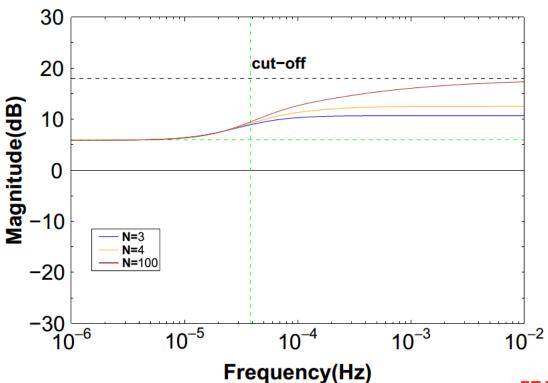
$$Q_i = \frac{1}{S} \frac{R_3^{-1} R_{si}^{-1}}{R_3^{-1} + R_{si}^{-1}} (T_i - \theta)$$


The **transfer function** will **filter** the different **inputs** as a function of the **frequency** to give the heat flux density output.

Strictly Proper Transfer Function

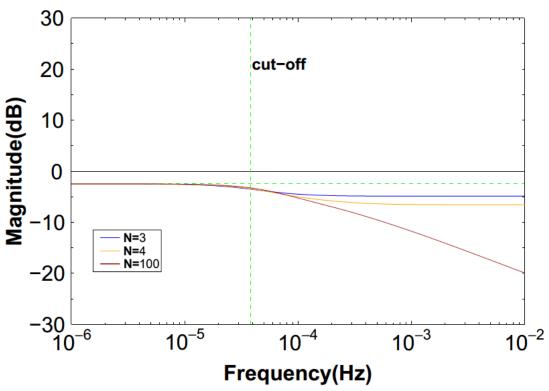
Input: Outdoor temperature

Output: Inside heat flux density



Proper Transfer Function

Input: Indoor temperature


Output: Inside heat flux density

Surface temperature as output

Input: Indoor temperature
Output: Inside surface temperature

CONCLUSIONS

- The **output** is **infinitely damped** for **strictly proper** transfer functions for **high frequencies**.
- The **output** can be **finitely amplified** for a **proper** transfer function for **high frequencies**.
- The use of heat flux meters is limited, not only for the measurement device but for the heat flux through the wall itself.
- The outside heat flux density will have a major problem to high frequencies present in inputs and/or noise.

Thanks for your attention

Ibán NAVEROS Christian GHIAUS

iban.naveros-mesa@insa-lyon.fr christian.ghiaus@insa-lyon.fr

